Math 128a - Week 12 Worksheet

GSI: Izak, (4/14/21)

5.9 Problems

Problem 1. Use the Runge-Kutta method for systems to approximate the solutions of the following system of first-order differential equations and compare the results to the actual solutions.
$u_{1}^{\prime}=-4 u_{1}-2 u_{2}+\cos (t)+4 \sin (t), u_{2}^{\prime}=3 u_{1}+u_{2}-3 \sin (t), u_{1}(0)=0, u_{2}(0)=-1,0 \leq t \leq 2, h=.1$. Actual solutions $u_{1}(t)=2 e^{-t}-2 e^{-2 t}+\sin (t)$ and $u_{2}(t)=-3 e^{-t}+2 e^{-2 t}$

5.10 Problems

Problem 2. Show that if the initial value problem $y^{\prime}=f(t, y), a \leq t \leq b, y(a)=\alpha$ is approximated by a one-step difference method: $w_{0}=\alpha$, $w_{i+1}=w_{i}+h \varphi\left(t_{i}, w_{i}, h\right)$. And there exists $h_{0}>0$ and $\varphi(t, w, h)$ continuous and Lipschitz in the w variable with Lipschitz constant L on

$$
D=\left\{(t, w, h) \mid a \leq t \leq b,-\infty<w<\infty, 0 \leq h \leq h_{0}\right\}
$$

then there exists a constant $K>0$ such that

$$
\left|u_{i}-v_{i}\right| \leq K\left|u_{0}-v_{0}\right|
$$

for each $1 \leq i \leq N$ whenever $\left\{u_{i}\right\}_{i=1}^{N}$ and $\left\{v_{i}\right\}_{i=1}^{N}$ satisfy the difference equation $w_{i+1}=w_{i}+h \varphi\left(t_{i}, w_{i}, h\right)$
Problem 3. Show that Runge-Kutta method of order four is consistent using the results of exercise 32 in section 5.4.

Problem 4. Given the multistep method

$$
w_{i+1}=-\frac{3}{2} w_{i}+3 w_{i-1}-\frac{1}{2} w_{i-2}+3 h f\left(t_{i}, w_{i}\right)
$$

for $i=2, \ldots, N-1$, with starting values w_{0}, w_{1}, w_{2}. (a) Find the local truncation error. (b) comment on consistency, stability, and convergence.

